
An Introduction to Programming in
Python

Stephen White <stephen@earth.li>

What is Python?

• Portable open source interpreted programming language

• Object Oriented (by design)

• Named after Monty Python's Flying Circus

Why use Python?

• Fairly simple, clean and consistant syntax (unlike Perl)

• Lots of modules to save re-inventing the wheel (like Perl)

• It's fairly easy to write extentions to Python in C and to execute Python code

from within C

This talk

The examples from this talk will assume Python 1.5.2 or newer (though many will

work on older versions). I will try and point out when I have used features from Python

2 or Python 2.2

A first Python program
#!/usr/bin/python

print "Hello World!"

Well it had to be didn't it :)
[stephen@eddie stephen]$./hello.py

Hello World!

[stephen@eddie stephen]$

No surprises there (other than the note that print has given us a newline

automatically). We can also use python interactively:
[stephen@FRANKIE pres]$ python

Python 2.2 (#1, Dec 31 2001, 15:21:18)

[GCC 2.95.3-5 (cygwin special)] on cygwin

Type "help", "copyright", "credits" or "license" for more information.

>>> print "Hello World"

Hello World

>>> "Hello World"

'Hello World'

>>> 3+4

7

>>> i=7

>>> i**2

49

>>>

Some syntax: variables

• Variables are all references to Objects

• Variables are used without declaration

• Lists, tuples and dictionaries (hashes or associative arrays in other languages)

are built-in data types

Reference assignment of Lists in action:
>>> a=[1,2]

>>> b=a

>>> a.append("lots")

>>> b

[1, 2, 'lots']

Python does not try to be clever. Despite runtime type checking and lack of explicit

declarations, a String is a String and an int is an int.
>>> s="1"

>>> s=s+1

Traceback (most recent call last):

 File "<stdin>", line 1, in ?

TypeError: cannot concatenate 'str' and 'int' objects

Lists

We've seen that Lists are mutable objects, which have methods such as

list.append(value), list.insert(index,value) and also list.pop(). We've also seen that you

can create them using square brackets ('[' and ']').

Elements in lists can be accessed and modified using a similar syntax to arrays in

other languages. If we specify a negative index then Python counts from the end of

the list.
>>> a=[1,2,'lots']

>>> a[0]

1

>>> a[0]=0

>>> a

[0, 2, 'lots']

>>> a[-1]

'lots'

This array syntax is extended to support 'slices'. We can select a range of values

from the List using a[0:2]. If we leave off either the upper or lower bound then the

range will extend to the end of the list. If we leave off both bounds we get the whole

list. This gives us a way to duplicate (or clone) Lists.

Lists(2)
>>> a=[1,2]

>>> b=a[:]

>>> b.append(3)

>>> b

[1, 2, 3]

>>> a

[1, 2]

We can assign to slices, and even modify the length of the List by doing so.
>>> a=[1,2,"lots"]

>>> a[0:2]=[100]

>>> a

[100, 'lots']

We can also remove elements from lists using the del keyword, and obtain their

length using the built-in function len(list).
>>> a=[1,2,"lots"]

>>> len(a)

3

>>> del a[0]

>>> a

[2, 'lots']

>>> del a

>>> a

Traceback (most recent call last):

 File "<stdin>", line 1, in ?

NameError: name 'a' is not defined

Strings

Like in JAVA, String objects are immutable - so (unlike Lists) once you have a

reference to a String the contents of that String cannot change.

Strings can be specified in various ways:
s="a \"normal\" string"

s='single quotes may be used instead'

s='strings can span lines \

like this'

s=r'a raw string, \ has no effect'

s=u'used for Unicode strings in Python 2'

s="""This string has:

* newlines in it

* can contain "quotes"

* We could have used '''string''' to achieve the same"""

The '+' character is used to concatenate strings. In Python 1.5 most operations on

strings are provided by the string module.
>>> import string

>>> string.upper('Hello')

'HELLO'

>>> string.split('Hello world')

['Hello', 'world']

>>> string.center('Hello',76)

' Hello '

Strings(2)

In Python 2 most of the methods from the string module are available as methods on

the string objects themselves.
>>> "Hello".upper()

'HELLO'

String to integer conversion should be done by calling built-in methods int(string) and

long(string).
>>> s="1"+"0"

>>> int(s)

10

Dictionaries

Dictionaries are associated arrays, like hashes (from Perl). This is an unordered set

of key-value pairs.

If you haven't come accross these before an example is probably easiest.
>>> names = {'spiffy': '10.0.1.6', 'sticky': '10.0.1.4'}

>>> names['spiffy']

'10.0.1.6'

>>> names['scooby'] = '10.0.1.8'

>>> names

{'sticky': '10.0.1.4', 'scooby': '10.0.1.8', 'spiffy': '10.0.1.6'}

>>> names.keys()

['sticky', 'scooby', 'spiffy']

>>> names.values()

['10.0.1.4', '10.0.1.8', '10.0.1.6']

>>> names.has_key('sticky')

1

>>> names.has_key('foo')

0

>>> names['foo']

Traceback (innermost last):

 File "<stdin>", line 1, in ?

KeyError: foo

Tuples

Tuples are immutable Lists, which makes them useful as (for example) keys in

Dictionaries.
>>> t = 1,2,'lots'

>>> t[0]

1

>>> t[3]=3

Traceback (innermost last):

 File "<stdin>", line 1, in ?

TypeError: object doesn't support item assignment

Tuples can be specified inside parentheses, which allows us to create specify empty

tuples and also nest them.

Anyone who's thought about parsing while have realised that using the syntax

described the specification of a tuple containing exactly one element is ambigious.

The solution is slightly ugly and is to put a comma after the one and only element.
>>> t = 'abc',

>>> t

('abc',)

>>> len(t)

1

Blocks

Before talking about loops we need to briefly mention blocks of code. Unlike C's { and

} or Pascal's begin and end, Python has no keywords for the begin and end of a block.

Instead Python uses the level of indentation to work out the block structure. While this

may seem weird it's not really a problem, since it just forces a coding style that most

(sane) people use anyway.
>>> print "a"

a

>>> print "b"

b

>>> print "c"

 File "<stdin>", line 1

 print "c"

 ^

SyntaxError: invalid syntax

Yes, that syntax error was a result of the invalid indentation. The error could be more

helpful. If you use Python this will catch you out sometimes. I often get caught out by

trying to write things like:
if first==second

 and third==forth:

Loops
for i in [1,2,"lots"]:

 print "Iteration",i

for i in range(1,4):

 print "Iteration (2)",i

for i in range(100):

 if i<5: print i,"is small"

 if 13<=i<=19: print i,"is in the teens"

 if i in [6,28,496,8128]: print i,"is perfect"

x = 10

while x >= 0:

 print "x is still not negative."

 x=x-1 # x-- not supported :(, and even x-=1 is Python 2.x only

txt = open("myfile.txt")

for line in txt.readlines():

 print line

close(txt)

Procedures
def fib(n):

 "Return the nth term of the Fibonacci sequence inefficiently"

 if n<=1:

 return n

 else:

 return fib(n-1) + fib(n-2)

Paramters can be given default values to create functions that take variable number

of arguments (you can also create functions that take arbitary numbers of paramters,

but I'm not covering that).
def parrot(voltage, state='a stiff', action='voom', type='Norwegian Blue'):

 ...

parrot(1000)

parrot(action = 'VOOOOOM', voltage = 1000000)

parrot('a thousand', state = 'pushing up the daisies')

parrot('a million', 'bereft of life', 'jump')

Functions can be referenced
>>> def add(x,y): return x+y

...

>>> plus=add

>>> plus(3,4)

7

Documentation Strings

My fib(n) function on the previous slide had a String as the first line of the body. This

is a convention called a 'Documentation String', which may be used by debuggers or

IDEs and so on. Furthermore:
>>> fib.__doc__

'Return the nth term of the Fibonacci sequence inefficiently'

>>> len.__doc__

'len(object) -> integer\012\012Return the number of items of a sequence or mapping.'

>>> import string

>>> string.__doc__

'Common string manipulations.\012\012Public module variables:\012\012whitespace -- a string containing all characters considered whitespace\012lowercase -- a string containing all characters considered lowercase letters\012uppercase -- a string containing all characters considered uppercase letters\012letters -- a string containing all characters considered letters\012digits -- a string containing all characters considered decimal digits\012hexdigits -- a string containing all characters considered hexadecimal digits\012octdigits -- a string containing all characters considered octal digits\012\012'

Classes may have documentation strings as well, though I have generally not

included them for brevity.

Classes
class foo:

 def __init__(self):

 self.x = 0

 def getX(self):

 return self.x

 def setX(self,val):

 self.x = val

That, rather boring, class should be fairly self explanatory to anyone who's done any

Object Oriented Programming.
>>> a = foo() # Create a new instance of class foo

>>> b = foo() # Create another new instance of class foo

>>> a.getX()

0

>>> a.setX(3)

>>> b.setX(7)

>>> a.x

3

• Constructors may take arguments

• Classes may be derived from other classes, using class bar (foo): to declare

that bar inherits from foo.

• Multiple inheritance is supported.

Classes (2)

• Attributes may be made 'class private' by naming them with two leading

underscores, e.g. self.__i. This isn't bullet-proof, if some-one knows what

they're doing they can still modify __i from outside your class.

Explicit inclusision of 'self' in the parameter list allows us to call methods in the

superclass without special syntax:
class foo (bar):

 def a_method(self,param):

 # Call super

 bar.a_method(self,param)

 # Do stuff

 print "Some stuff"

CGI (and print)
#!/usr/bin/python

import cgi

form = cgi.FieldStorage()

print "Content-type: text/plain\n\n"

print "Yup, it's a CGI in Python\n"

if (form.has_key("user")): print "user given is %s" % (form["user"].value)

That example introduces a new operater, the '%' format operator for strings. It works

much like printf in C. After the '%' is a tuple of values that get inserted at the points

marked by '%s', '%i', etc. There is a modification of this syntax that is useful for turning

multi-line strings into templates for web pages (or whatever).
>>> a = '%(lang)s has %(c)03d quote types.' % {'c':2, 'lang':'Python'}

>>> a

'Python has 002 quote types.'

Exceptions
import getopt, sys

try:

 optlist, args = getopt.getopt(sys.argv[1:],"hv",["help","version"])

except getopt.error, e:

 print "Error:",e

 usage()

Exceptions are thrown using raise. String, classes or instances can be thrown as

exceptions. In the above example getopt would have code such as raise getopt.error,

"Some error message. You need not give a tuple to raise if the exception contains all

the information needed without extra arguments.

Operator Overloading
class frac:

 def __init__(self,num=0,den=1):

 self.__num = num

 self.__den = den

 self.normalize()

 def normalize(self): pass # TODO: implement GCD stuff :)

 def __repr__(self):

 if self.__den == 1: return '%s' % self.__num

 else: return '%s/%s' % (self.__num,self.__den)

 def __mul__(self, b):

 return frac(self.__num * b.__num, self.__den * b.__den)

>>> f = frac()

>>> print f

0

>>> a = frac(1,4)

>>> b = frac(2)

>>> print a*b

2/4

__setitem__(self,index,value)

__getitem__(self,index) - make class look like array

__call__(self,arg) - make class look like function

__getattr__(self,name) - overload attribute calls

__del__(self) - destructor

__contains__(self,x) - overload if a in foo

Binary Data-Structures

When reading from files or sockets we may encouter binary structures that need

processing. Use the module 'struct'.
import struct

head = struct.unpack("2i", sock.recv(8))

ver = head[0]

msgLen = head[1]

The format string can include characters to change the endianness and alignment

characteristics. There is a utility function calcsize(fmt) to tell you how many bytes of

data a given format string corresponds to.

Since Python Strings are not null-terminated binary data can be (is) stored as Strings

prior to unpacking, or after packing.

Databases

• There is a standard Python API for accessing Databases.

• I don't think more code with SQL mized in would serve any purpose here, so

here are some URLS.

• http://www.python.org/topics/database/DatabaseAPI-2.0.html

• There are modules to talk to most major databases (inc ODBC) at:

http://www.python.org/topics/database/modules.html

• See also http://www.amk.ca/python/writing/DB-API.html

Embedding Python in C

There's quite a nice API for embedding Python in C programs, and for calling C

functions from Python. It's documented on the web, but for the impatient ...
#include <Python.h>

...

int main(int argc, char *argv[]) {

 Py_Initialize();

 pModule = PyImport_Import(PyString_FromString("watch"));

 if (pModule == NULL) {

 printf("Error: python module load failed\n"); PyErr_Print(); exit(1);

 }

 pDict = PyModule_GetDict(pModule);

 PyObject *pFunc = PyDict_GetItemString(pDict,somefunctionname);

 if (pFunc && PyCallable_Check(pFunc)) {

 PyObject *pArgs = PyTuple_New(0);

 PyObject *pValue = PyObject_CallObject(pFunc, pArgs);

 if (pValue != NULL) {

 ...

 Py_DECREF(pValue);

 } else { ... }

 Py_DECREF(pArgs);

 }

 Py_DECREF(pModule);

 Py_Finalize();

 return 0;

}

Embedding Python in C

Again, to avoid having to read the documentation, if you're running Redhat Linux you

can compile that with:
gcc foo.c -o foo -L/usr/lib/python1.5/config/ -lpython1.5 -lpython1.5

 -lm -lpthread -ldl

C can provide functions to Python too, there's a standard API that can be used within

programs like the one on the last slide as well as in modules design to be used from

'normal' Python. The following would allow Python called from the previous example to

'import stuff' then use 'stuff.aMethod(i)' to call the C method 'aMethod'.
static PyObject* aMethod (PyObject *self, PyObject *args) {

 if (PyArg_ParseTuple(args,"i",&retVal)) {

 ..

 } else {

 return NULL;

 }

}

static PyMethodDef pyMethods[] = {

 { "aMethod", aMethod, METH_VARARGS, "Do some stuff with a int argument" },

 {NULL, NULL, 0, NULL} };

...

Py_InitModule("stuff", pyMethods);

OS Module
Python provides modules to provide access to operating system features. There are

specific modules for each operating system, but you can get at the common

functionality by using the 'os' module (which automatically delegates to the right

module for your operating system). The os module also provides information, such as

the path seperator character.
#!/usr/bin/python

import os

import pwd

import string

name = string.split(pwd.getpwuid(os.getuid())[4],',')[0];

print 'hello', name

Credits and Questions

• Created using Pythonpoint from Reportlab

• http://www.python.org./doc/current/tut/tut.html

• http://www.python.org./doc/current/modindex.html

• Questions?

Extras

• a,b = 1,2 works

• Re-usable scripts
#!/usr/bin/python

def do_stuff(someArgs):

 ...

if __name__ == '__main__':

 import someModules

 do_stuff(someValues)

ReportLab
Before reportLab would work I needed to install the imaging module:

http://www.pythonware.com/downloads/Imaging-1.1.3.tar.gz

run 'python2 setup.py build; sudo python2 setup.py install' on Redhat 7.2

on cygwin (with X installed) symlink /usr/X11R6/include/X11 to /usr/include/X11

and in /usr/lib/ libtcl8.0.a -> libtcl80.a and libtk8.0.a -> libtk80.a

Functional Programming

A few functional programming constructs are supported, as well as list

comprehensions (examples of which I haven't included). Lack of Lazy evalution makes

it much less fun though. Map is useful, since it is written in C is can be faster than 'for'

loops in some circumstances.
reduce(lambda x, y: x+y, [1, 2, 3, 4, 5])

>>> foldl = reduce # also have map and filter

>>> def inc(x,y): return x+1

...

>>> foldl(inc,range(1,10000))

9999

>>> foldl(inc,range(1,40000000))

[3 minutes of CPU and 614MB of RAM later]

39999999

However hugs can't do that the naive way either

inc x y = x+1

Main> foldl inc 1 [1..40000]

ERROR - Control stack overflow

Main> foldl inc 1 [1..40000000]

ERROR - Garbage collection fails to reclaim sufficient space

Sockets

There's a socket module. There's a surprise.
from socket import *

sock = socket(AF_INET, SOCK_STREAM)

sock.connect(HOST, PORT)

Iterators and Generators

Python 2.2 includes some new features, it defines 'iterators' - a away of writing

classes that behave like sequences - and generators - a rather bizzare way of having

a function return a sequence.

It's possible to achieve some of this with older versions of Python, as demonstrated in

the following example.
>>> class foo:

... def __getitem__(self,i):

... if (i <= 100): return "[%s]" % i

... else: raise IndexError()

...

>>> for i in foo():

... print i

...

[0]

[1]

[2]

....

[98]

[99]

[100]

>>>

	Front Page
	What is Python?

	A first Python program
	Some Syntax: variables
	Lists
	Lists(2)
	Strings
	Strings(2)
	Dictionaries
	Tuples
	Blocks
	Loops
	Procedures
	Documentation Strings

	Classes
	Classes(2)

	CGI
	Exceptions
	Operator Overloading
	Binary Data
	Databases
	Embedding Python in C
	Embedding Python in C

	OS
	Credits and Questions
	Extras
	Functional Programming
	Sockets
	Iterators and Generators

