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Abstract

In 3D graphical rendering, it is common to want to produce a rendered

image of an object that’s as realistic as possible, subject to the limits of

memory and computing power available. A commonly used technique that

helps to achieve this realism is texture mapping. The parameterization,

which is the subject of this project, defines how points in the texture

relate to points on the object’s surface.

I investigate a number of existing mesh parameterization methods.

These methods and their implementations are explained in detail, and

then compared. Also, I describe two of my own variations of one of the

approaches.
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1 Introduction

In 3D graphical rendering, it is common to want to produce a rendered image
of an object that’s as realistic as possible, subject to the limits of memory and
computing power available. A commonly used technique that helps to achieve
this realism is texture mapping.

Figure 1: comparison of two rendered cubes, one coloured (left) the other texture
mapped (right). With texture mapping, the cube can look much more like a
real object made from a particular material.

In texture mapping, the variation of colour across the surface of a 3-
dimensional object is held in a 2-dimensional representation. This is typically
a bitmap, such as the example in figure 2 (below). The object can look
much more realistic with a texture map, whilst rendering it is not much
slower. The parameterization, which is the subject of this project, defines
how points in the flat texture space relate to points on the object’s actual surface.

Figure 2: the texture that was used to produce the cube on the right of figure 1.
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Texture mapping is actually quite versatile, as it can be adapted to hold
not just colour, but any information that happens to vary across the surface of
an object. For example, one technique that has recently gained popularity is
bump mapping (see [4]). Instead of colour, the normal vector is varied across
the surface of the object as though it had a specific arrangement of bumps on it
that aren’t geometrically there. Storing these normals involves the same param-
eterization problem as storing a distribution of colour for texture mapping, it’s
just the meaning of each value in texture space that is different. The assigned
normals are then used in place of the true normals in lighting when the object
is rendered, resulting in a surface that can look convincingly bumpy. This can
be much more efficient than actually modelling detailed bumps geometrically.

Mesh parameterization is also used outside of graphical rendering, in the field
of computational geometry. An example of this is remeshing1. One technique
in remeshing is to first find a parameterization taking the object’s surface onto
a region of the plane, perform some kind of 2D remeshing algorithm there, and
then use the inverse mapping to obtain the remeshed object in its original 3D
form.

This project is primarily about the problem of parameterizing meshes for
texture mapping. I will consider only bounded polyhedral meshes composed of
finitely many triangular faces, none of which are degenerate (that is, of zero
area). Faces may touch only at their vertices and edges, and edges may touch
only at their end vertices. In practice most meshes either fulfill all of these
requirements, or can be made to using simple algorithms.

The goal of my project is to find, understand, implement and investigate
methods of automatically generating mesh parameterizations, with the desirable
properties described in section 2 as far as possible.

1The word ‘mesh’ generally refers to a collection of vertices, edges and faces, the data that
is used to define a 3D object. Thus, remeshing is the process of approximating an existing
object using a different collection of vertices, edges and faces. Usually there is some desirable
property in the result that wasn’t present in the original mesh, or the new representation is a
approximation of the first that has fewer faces.

3



2 The Parameterization

A parameterization of an object is a function p : S → [0, 1]2, where S is the set
of all points on the surface of that object, a subset of R3 (the parameterization
is often constructed in the opposite direction, but I believe this way round is
clearer). Throughout this report, I shall frequently illustrate a parameterization
of a mesh by drawing that mesh with its image in texture space alongside.

Although I shall assume that this texture space corresponds to a square
bitmap fitted into [0, 1]2, I will not assume availability of the data that is to be
kept in that bitmap2.

The parameterization should be a 1-1 function, because each region of the
model’s surface needs its own corresponding region of texture space that is not
shared by any other parts of the surface. Then the colour of that region may
be stored without interference.

In fact I am interested in just piecewise linear parameterizations. Specifi-
cally, each vertex is given (u, v) texture co-ordinates to which it will be mapped.
Then the points on each face are then mapped using linear interpolation between
those texture co-ordinates. Thus, the positions of the vertices in texture space
alone are sufficient to completely define the mapping, and indeed the mapping
will frequently be described by giving these positions only.

The reason for choosing this type of function, other than the need to narrow
down the choices somehow, is because support for texture mapped rendering us-
ing piecewise linear parameterizations is commonly found in 3D graphics hard-
ware. It is also fairly easy to visualize such a mapping, by imagining that the
object’s surface is made of elastic faces between vertices, and that the vertices
can be pulled around freely in space. The task is then to position the vertices
flat on a plane in such a way that none of the faces overlap one-another, as that
would correspond to a mapping that is not 1-1.

There is a problem though - this is impossible! No matter where we put the
vertices of say, a cube, there is no way we can flatten it onto a plane without
any of the faces overlapping. The solution is to cut the cube in some manner
first, for example, by splitting it into two parts with two copies of each of the
vertices on the cut itself. The parts are each topologically equivalent to a disc
(i.e. a flat surface with no holes, that has a boundary that is a simple loop),
and can be flattened, as illustrated below (for clarity, the edges dividing the
square faces into triangles have been left out). After finding parameterizations
for each part separately, the results can be packed into the same texture space.

2If the intended texture is already known in some form, it is possible to take advantage of
symmetries, and to allocate more texture space to regions of greater detail when constructing
a parameterization. This can lead to higher quality results (for example, see [12])
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polyhedron divided polyhedron flattened parts

Figure 3: the polyhedron must be divided into parts, each topologically equiv-
alent to a disc, before a piecewise linear parameterization is found.

There are many approaches to cutting a polyhedral mesh into two or more
parts (examples can be found in [10] and [8]). These methods often try to
return pieces that aren’t too severely curved, to improve the results of the
parameterization that follows. It is not a good idea to divide the mesh too
finely though, for a number of reasons. It is difficult to make the textures
line up correctly at the seams, and the rendering system may produce visible
artifacts in any case (for example, blending and filtering methods may not work
correctly where two parts meet). The joins may be deliberately placed where
this is not too visible ([8]). Each division also adds duplicate vertices which use
up valuable resources such as graphics card memory and bandwidth, resulting
in slower rendering.

I am focusing my efforts in this project on the parameterization itself, rather
than on this division step and the packing that often follows. Thus from now
on, with the exception of a couple of the methods briefly mentioned in section 4,
I’ll assume that all meshes are the product of some division step that has already
been performed, and therefore are topologically equivalent to a disc.

There is one final thing to be said about parameterizations, and that is that
some are better than others. This is because the texture bitmap underlying
texture space has a limited resolution. If, for example, a face is given less than
its fair share of texture space, then it won’t be possible to draw as much detail
onto that face. Ideally, the image of each face would have an area that fills the
same proportion of texture space as the actual face fills on the original surface.
Even if this rather demanding goal was met, it is likely that the images of some
of the faces will be highly elongated in one direction at the expense of another.
The result, again, is that surface detail cannot be properly described under such
a parameterization.

Surfaces which can be parameterized to a flat plane without distortion be-
long to a fairly small class called developable surfaces, which include suitably
cut cones and cylinders. For other surfaces, distortion must be tolerated but
minimised. A number of distortion measures will be used in section 6. It is also
reasonable to judge distortion by eye when examining a parameterization, since
it is usually quite apparent.
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3 My Program

I decided to construct an environment in which to test parameterization meth-
ods. My program is written in C++ (though the style is closer to C code),
and has a graphical interface (for Windows), as illustrated in figure 4. The
significant things it does are:

mesh The program stores one model at a time in a data structure inspired by
the famous ‘winged edge’ structure (see [1]). Though it doesn’t have or
need every feature present in the winged edge structure, it is possible to
find all of the edges joining to a particular vertex without performing a
search.

Vertices are stored in a dynamically sized array, whereas face and edge
data are dynamically allocated in a linked data structure. The interface
provides access to a routine in the program that loads one ‘wave front
object’ (.obj) model file into this structure at a time. The object that
is loaded should be topologically equivalent to a disc, since the program
doesn’t perform mesh division as described previously.

parameterization The mesh data structure has room for mapped co-ordinates
(u and v) with each vertex, sufficient information to define a piecewise
linear mapping of the surface into texture space.

output The surface presently stored by the program is displayed on the left
side of the program window for reference, with a number of viewpoints
available. The parameterization, if it has been constructed, is displayed
on the right. There is a menu command that displays some very basic
information about the current model and parameterization.
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Figure 4: My program allows the user to load a model from a file, and select
various parameterization routines using the menu.
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4 A Few Simple Methods

An intuitive way to parameterize a mesh would be to ‘unfold’ it, fitting the re-
sulting net into texture space. However this approach is riddled with problems.
It does not fit into the scheme of dividing the mesh into pieces each topologi-
cally equivalent to a disc; rather, it makes large number of cuts along edges of
the mesh itself with the consequences associated with making too many cuts
described in section 2. It may often leave a high proportion of texture space
unfilled, or take a long time to compute an optimal unfolding. Finally, not all
polyhedral shapes may be unfolded without overlap (for example, see [2]).

Another fairly obvious way to parameterize a mesh is, having divided it
into topologically disc-like parts, to project each onto a plane. The plane can
be chosen by the user or selected by statistical methods such as least squares
fitting. This approach is simple and can produce acceptable results in some
cases, but as figure 5 shows, when the mesh is too highly curved it can result in
severe distortion and the loss of the 1-1 property.

Figure 5: Two meshes and their projections onto a plane. The second mesh
is too highly curved, resulting in a projection that goes back on itself. This is
not suitable for use as a parameterization, as it would not be 1-1 where there is
overlap.

Other projective methods use an intermediate shape such as a cube, cylinder
or sphere. Usually a complete polyhedral mesh is mapped onto the intermedi-
ate shape, then a second mapping to the plane is applied (some kind of cut
being made in the process). This sort of approach is commonly found in 3D
modeling packages, and like projection onto a plane, each variant is suited to a
limited classes of objects (usually objects fairly similar to the chosen interme-
diate shape). See [3] for discussion of various intermediate shapes and methods
of mapping between them.
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5 Convex Combination Methods

The ideas in this section are based on the mathematics of drawing planar graphs.
Should the reader be unfamiliar with the basics of graph theory itself, there
are numerous books and web pages with basic information and definitions (for
example, see [18]).

Suppose that the 1-skeleton of a mesh, a graph consisting of its vertices
and edges, is drawn on the plane. It can be seen that if none of the triangles
of the original mesh overlap in the arrangement on the plane, except at their
common edges, then the mapped vertex positions in this embedding can be
fitted into [0, 1]2 and used to define a 1-1 piecewise linear parameterization of
the mesh. The requirement that triangles do not overlap is subtly different from
the usual graph drawing constraint that no edges cross, however the relevant
proof actually shows both (see section 5.2).

5.1 The Barycentric Mapping

Floater [6] suggested a method for parameterization based on the work of Tutte
in [15], [16] on straight line drawings of graphs. Here is the rough idea:

1. The boundary vertices of the mesh are mapped onto the corners of some
convex polygon in texture space, maintaining their cyclic order. The dis-
tance between points around the polygon is always non-zero.

2. Linear equations are generated fixing the mapped position of each inte-
rior vertex at the barycentre (vector average, centroid) of the points its
neighbouring vertices are mapped to. These positions cannot simply be
evaluated, because they all depend on one another.

3. The system of equations is solved to obtain the mapped positions of the
interior vertices. More details about the equations and solution follow in
section 5.3.

Figure 6: the mesh (left) has its boundary vertices mapped to a convex ar-
rangement in texture space (middle), then a system of equations is generated
and solved for the mapped positions of the interior vertices (right)
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5.2 Explanation

Tutte’s proof [16] shows that there is a unique solution to this system of equa-
tions. Furthermore no point in texture space is in more than one of the following
- a vertex, an edge, or a ‘region’ of the solution. The regions here correspond
to interiors of the mesh triangles under the mapping, except that there is one
further region which is everywhere outside the (convex) boundary. The graph
theory involved in the proof is complex, but its significance is that the barycen-
tric mapping has no overlaps - it is guaranteed to be 1-1.

My explanation of how the conditions of Tutte’s proof are met is presented
in appendix A.

5.3 Implementation

The first thing my implementation of the barycentric method has to do is to
identify the boundary of the mesh, and construct a list of its vertices in cyclic
order. This process can be summarized as:

1. Search a list of every edge in the mesh until some boundary edge is found.
A boundary edge can be identified since it is an edge of only one face,
whereas an internal edge is an edge of two. Add both vertices of the edge
to the boundary list, and begin the algorithm at the second.

2. Construct the list of vertices around the boundary by searching for a
boundary edge connecting to the current vertex, which hasn’t been used
so far. Traverse the edge by adding its far end vertex to the list, and
moving on to that end. Finding the edges connecting to a particular
vertex is easy and doesn’t involve checking every edge in the mesh, due
to a series of links from each vertex in the mesh data structure. Keeping
track of which edges have been used already requires just one binary value
per edge.

3. Repeat the process until the first vertex is reached again, and thus the
complete boundary has been found.

A small example is presented in figure 7.
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Figure 7: the highlighted vertex indicates where the algorithm has got to at
each stage of boundary construction, and the highlighted edges indicate the
edges that have been used so far.
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A number of things can go wrong with this, most obviously, we could get
stuck without returning to the vertex where the algorithm begin. It is also
possible that more boundary edges exist beyond the cyclic path found by this
process. My program detects these error conditions. However, for any mesh
that is topologically disc-like, the algorithm is guaranteed to terminate correctly
having identified the entire boundary.

After finding the boundary, that polygon is mapped to the corners of a
convex shape. The choice of convex polygon does not matter to the correctness
of the algorithm, only to the quality and usefulness of the result. A polygon with
points on a unit circle is a good boundary shape because no point is distinguished
by being further away from the middle than the others. Vertices may be spaced
around this circle at distances proportional to the edge lengths between them.
Alternatively, a square or rectangular boundary may be desirable because it can
fill a square or rectangular texture bitmap exactly, or the more abstract space
[0, 1]2, without wasting any space. A further reason to choose simple shapes
such as rectangles and circles is that algorithms for packing multiple texture
maps into a single texture space generally become simpler.

It is also possible to design a boundary shape suitable for a particular mesh,
for example using the minimization techniques discussed later. However, due
to the convexity requirement there is a limit to how good the boundary shape
may be.

To find the positions of the internal vertex locations in texture space, a
set of equations are produced for each co-ordinate direction (u and v). I will
assume just one co-ordinate direction for the rest of this discussion, as the other
direction is tackled in exactly the same manner. Each equation corresponds to
a statement about one of the vertices. For the internal vertices this statement
is ‘vertex i is at the barycentre of its neighbours’:

xi =

∑

j∈n(i) xj

| n(i) | (1)

where n(i) is the set of vertices neighbouring i, that is, vertices connected
directly to i by an edge. The boundary vertex equations instead have the
meaning ‘vertex i is fixed at position Ci’ (where Ci comes from the convex
boundary polygon):

xi = Ci (2)

Thus, the complete system is linear and can be expressed as a matrix of
equations M :

MX = C

where X is the unknown column vector of mapped vertex positions, and C is
the column vector of constants. A proof that the square matrix M is invertible
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is presented in appendix B. As a result, it is possible left-multiply both sides
of the equation by M−1, which reduces the problem to matrix inversion and
multiplication:

X = M−1C

Matrix inversion is not the topic of my project, so I have used an existing
matrix library called ‘TNT’ [20] to implement matrix inversion in my program.
This process can be performed by a number of methodical approaches with
varying speed, generality, and numerical stability, several of which are provided
by the library. I chose to use the LU Decomposition implementation because it
is comparatively fast. The decomposition itself, which makes up the bulk of the
work, is identical for the second co-ordinate direction and does not need to be
repeated.

5.4 Results

As has been discussed, the barycentric mapping is proven to produce a 1-1
piecewise linear mapping between the mesh surface and texture space. My
implementation works as expected, as illustrated by the examples in figures 8
through 10. However, the method does not attempt to keep distortion small,
and this is evident in most of the results. Some triangles have been severely
elongated or shrunk in the mappings compared to others which should ideally
be the same size.

Finding and mapping the boundary is done in time O(e), where e is the
number of edges in the input. This can be proven to be equivalent to O(v), the
number of vertices. Thus, generating and solving the system of equations will
dominate the time cost of the algorithm. Generating the equations is straight-
forward, it involves generating v equations with v values in each, a total of
O(v2) work. Solving the system using the LU Decomposition is therefore the
dominant part, at O(v3), so my implementation of the barycentric mapping is
O(v3) overall (but see section 7.3).
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Figure 8: a mesh and its barycentric mapping with a square boundary

Figure 9: another mesh and its barycentric mapping with a circular boundary
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Figure 10: a much larger and more challenging mesh and its barycentric map-
ping. The program reports no overlap, which means that although it is highly
distorted this mapping is 1-1.

5.5 Convex Combination Parameterizations

The barycentric method is not the only way of mapping the internal vertices.
Floater [6] showed that Tutte’s proof can be generalized so that the equations
for each internal vertex are any convex combination of its neighbours. A convex
combination is an affine combination where each coefficient is in the range [0, 1]
(in fact they must be strictly less than 1 in this case):

xi =
∑

j∈n(i)

λi,jxj

where
∑

j∈n(i)

λi,j = 1

and ∀j ∈ n(i), 0 ≤ λi,j < 1

The result is always inside the convex hull of those points. It can be thought
of as a weighted barycentre, and indeed the barycentric mapping just a special
case where all of the weights are equal. Another convex combination mapping
is Floater’s shape-preserving parameterization, described in [6], which attempts
to produce less distortion. Another is described in [7]. All of these schemes can
be solved in the same way as the barycentric mapping, using matrix inversion.
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6 Optimization Methods

In this section I will explore an alternative approach to the parameterization
problem, using optimization methods. An optimization algorithm, in principle,
is supplied with a function f : Rn → R, and returns the point x ∈ Rn where
f(x) is minimal. In practice if the nature of f is unknown the algorithm can
only sample it in a finite number of places, so the process can only work if
that function is reasonably well behaved. Practical algorithms are also prone
to sometimes finding local rather than global minima, becoming stuck without
reaching a minimum, or taking a long time to converge. Nevertheless, in many
cases they work remarkably well.

A many dimensional domain is necessary to allow any parameterization to
be input. A domain with two dimensions per vertex in the mesh is sufficient, one
corresponding to each co-ordinate direction in texture space. The idea is that
the function should increase as distortion in the corresponding parameterization
increases. As has been noted already in section 2, producing a parameterization
with no distortion is only possibly for a limited class of mesh surfaces, but this
approach aims to find one with as little distortion as possible.

The function should also be reasonably smooth if optimization is to work.

In my implementation of the methods that follow I decided to use the ‘Opt-
Solve++’ library [19] for optimization. For most tasks, the Conjugate Gradient
Method [17] was the most appropriate method provided by the library because
it is fast and robust. However, for each function it requires a gradient function
to be supplied as well, with respect to each variable. These gradient functions
and their derivations are given in appendix C. An initial guess is required as
well, which should be sufficiently close to the optimal solution that the algo-
rithm will not become stuck at some other local minimum. The choice of guess
will be discussed after each method.
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6.1 Spring Method

The function can be based on the lengths of edges in the parameterization,
compared to their true lengths in the mesh itself. The idea is to use optimization
to find a parameterization where these lengths are similar, thus triangular faces
have the same shapes, and when this is done scale its image in texture space to
fit [0, 1]2.

Let Le be the length of edge e in the original mesh, and le be the length
of that edge in the current parameterization. A suitable optimization function
would encourage these lengths to match by increasing with the magnitude of
the difference |le − Le|, for every edge e. Merely summing the differences is
not good enough though, as such a scheme is prone to sacrificially having a few
greatly lengthened edges in order to satisfy the majority. A decent compromise
would be preferred. A good starting point therefore would be the sum-squared
of these differences:

∑

e∈edges

(le − Le)
2 (3)

This is comparable to the potential energy of a physical spring network.

I found by experimentation that this method is not capable of finding a 1-1
parameterization unless the initial guess it’s provided with is already close to
a solution. The problem is that a triangle in texture space and its reflection
have exactly the same edge lengths. Optimization therefore makes sure that
each face is the same shape as it was in the mesh, but has no preference about
whether those triangles are ‘flipped’, causing the parameterization to fold back
on itself. The following example, from an initial guess consisting of random
points in [0, 1]2, illustrates this:

Figure 11: triangle flips are somewhat numerous when the initial guess for
optimization wasn’t good enough.
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An improvement might be to find an initial guess by projection, if a suitable
plane for projection exists. The most flexible method I found was instead to
perform a barycentric mapping, then scale the result so that the sum of the
mapped edge lengths equals the sum of the mesh edge lengths. It might seem
unnecessary to use an optimization method having already obtained a parame-
terization in this way, but the result is a great reduction in distortion throughout
the mesh (compare figure 12 to figure 8 of section 5.4). ‘flipped triangles’ may
still crop up in places, particularly in larger meshes:

Figure 12: a good initial guess leads to much better results.

A better function for length optimization was suggested in [10]:

∑

e∈edges

(l2e − L2
e)

2

L2
e

(4)

This function grows more sharply as edges are stretched or contracted than
the sum-squared formula. Obviously this definition requires that none of the
mesh edges be of zero length. The results seem to be slightly less distorted in
general (see section 7.2), but show just as many triangle flips:

Figure 13: the improved parameterization.
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6.2 Preventing Triangle Flips

Another formula is suggested in [10], which improves on the first by the addition
of an area preserving term. Although the regular sense of area is used in the 3D
mesh, signed area is used in the parameterization. The signed area of a triangle
has the same magnitude as its area, but it is positive when the three corners
are specified in anticlockwise order, negative if they the other way around, and
of course zero if they are collinear.

Making the signed area in the parameterization match the regular area from
the mesh basically forces that signed area to be positive. As long as the faces
of the original mesh were all declared in anticlockwise order, when viewed from
just in front of that face, this strongly discourages triangle flips by making the
parameterization ‘front side up’, in a sense.

Fortunately, 3D objects commonly have their faces declared in anticlock-
wise order when viewed from the outside, because it is a helpful property for
many other purposes such as normal determination and ‘back face culling’ in
rendering.

The suggested area preserving term is:

∑

f∈faces

(S(f) − A(f))2

A(f)
(5)

where A(f) is the (non-zero) area of the face f in the original mesh, and
S(f) is its signed area in texture space. If f has corners (a, b, c), defining
vectors b′ = b − a, c′ = c − a, then the signed area of f works out to be
1
2 ((b′.u ∗ c′.v) − (c′.u ∗ b′.v)).

This new term is added to the original length preserving formula, that is
still necessary for the triangle shapes to be preserved. Optimization with this
combination usually produces a parameterization with little distortion and no
triangle flips, but neither is guaranteed by any means. Figure 14 shows the
result for the same example as before:

Figure 14: parameterization with the area preserving term
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It turns out that the improved formula doesn’t need a good initial guess
like the length formula did (such as beginning with a barycentric mapping). In
fact, the algorithm is usually happy with random starting values, say between
0 and 1. Besides the obvious advantage of not requiring an intelligent guess to
be constructed, this also results in a little bit more flexibility. For example, a
parameterization could be found for a mesh that actually has some small holes
in it, despite that it is not quite topologically equivalent to a disc.

It might be possible to improve the formula by making it respond more
sharply to decreases in area than to increases. This might lead to even fewer
triangle flips.

6.3 An Overlap Term

There is still a problem with the improved formulation. Although triangle flips
are discouraged, it is possible for non-neighbouring parts of a mesh to overlap
in the parameterization. Figure 15 shows an example of a spiral shaped mesh
where this happens:

Figure 15: an overlap that the area preserving term does not address

I have devised an experimental extra term which is proportional to the actual
overlap of the parameterization - more precisely, the sum over all pairs of faces
(A,B), A 6= B of (half) the area of the intersection of A and B in texture space.
In my implementation, these intersections are calculated using the Sutherland-
Hodgman Polygon Clipping algorithm [14]. The total overlap is then divided
by the total area of all of the faces in the parameterization. This term directly
discourages the parameterization from having overlaps.
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In practice, overlap is extremely slow to calculate since there are O(n2) inter-
section measurements to perform each time (overall performance is even worse
because my present implementation uses an optimization method called Powell’s
method to avoid the need to declare a gradient function; this method is much
slower because it calls the objective function many times per optimization step).
The situation could be improved with some kind of spatial partitioning method
to reduce the number of intersection calculations that are needed (see [11]).

Another problem is that optimization does not cope with the overlap function
very well in its present form. The gradient is often not indicative of the best way
to correct an overlap, frequently leaving optimization stuck with a suboptimal
solution. There is scope for improvement here, perhaps by somehow making
overlaps gradually less costly as they get nearer to some free space. A further
difficulty is that it’s sometimes advantageous for the optimizer to reduce the
size of an overlapping region rather than attempting to correct the overlap.

The spiral presented above is small, and its overlap is relatively straightfor-
ward to resolve. Optimization using length, surface, and the new overlap term
does produce a good 1-1 parameterization here, as shown in figure 16:

Figure 16: an example using the new overlap term

A different solution to this kind of overlap can be found in [13].
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6.4 Optimizing Convex Combinations

Another way to enforce the 1-1 property in an optimized parameterization would
be to restrict the domain to those parameterizations which are 1-1. Of course,
optimization is formulated for Rn, which makes this very difficult.

One way to do this in part involves the convex combination parameterization
from section 5. Not only are all convex combination parameterizations 1-1, but
all 1-1 parameterizations with a given fixed convex boundary can be expressed
as a convex combination with some weights [6].

I decided to take advantage of this by optimizing over these weights, us-
ing one of the standard distortion functions as an objective. The advantage
over previous optimization methods is that a 1-1 parameterization is guaran-
teed. However, like the barycentric mapping a fixed convex boundary must be
supplied.

The weights provided by the optimizer must be processed so that they are
always suitable for a convex combination mapping. I have done this by taking
the absolute value of each weight plus a small value, to ensure that each is strictly
positive. Next, the weights applying to each vertex are normalized so that they
sum to 1, and as a result, are each strictly less than 1. An additional detail is
that I have fixed the first weight for each vertex at 1 (before normalization),
rather than using an optimized variable. This is done to remove an unnecessary
degree of freedom, that of the scale of the set of weights around a vertex, so
that the optimizer does not get stuck continually growing or shrinking all of the
weights.

Figure 17: a mesh (left) is parameterized by a barycentric mapping (middle),
and by an optimized convex combination mapping (right)

This method shows promise, although the example above is perhaps a little
contrived. The function is obviously slow to evaluate, since a complete convex
combination parameterization has to be solved each time. Also, since I don’t
have a gradient function the slower optimization method must be used. Perhaps
surprisingly however, generally very few optimization steps were required in my
tests.
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In its present form this methods time cost grows too quickly, making it
unsuitable for any but very small meshes. However, there are a number of
ways this situation might be improved, such as calculating derivatives by some
relatively efficient means so that the conjugate gradient method can be applied.

Another significant improvement would be to allow the boundary shape to
be optimized as well, instead of being fixed. A method for expressing the convex
boundary by means of a vector of real numbers would be required, or perhaps
a means of expressing only a limited class of convex shapes. The result would
be greater flexibility, although still with the constraint of a convex boundary.
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7 Comparison

I have examined various methods of parameterizing disc-like meshes. In this
section I will compare variants of these methods.

BMapS Barycentric mapping, square boundary.

BMapC Barycentric mapping, circular boundary.

SSLen Optimization using sum-squared length difference function.

MYVLen Optimization using improved length formula from [10].

Area Optimization using area preserving and improved length preserving
terms.

Area∗ This is the same algorithm except beginning with a vector of random
numbers. All of the other optimization algorithms begin with a barycentric
mapping in a circular boundary.

Overlap Optimization using overlap preventing, area preserving and length
preserving terms.

OptCC Optimized convex combination mapping, circular boundary.

A 1-1 mapping is desirable, which is equivalent to an overlap measure of zero.
Low distortion is also very important, particularly according to the edge length
metrics, that measure shape distortion (as opposed to the area metric which
is primarily to prevent the most common causes of overlap). It is usually not
important to use the whole of texture space, [0, 1]2, as multiple parameterized
regions are often reduced and packed together in the same texture space after
they have been generated.

The speed of these algorithms is worth considering, particularly when large
meshes are being parameterized. Unfortunately, overlap optimization and op-
timized convex combinations are both algorithmically very slow algorithms in
their present form, to the point that I could not get results for large enough
meshes to usefully compare them to the other algorithms (hence, these two are
left out of most of the tables below). Statistics for the Area∗ algorithm, which
uses random numbers, are the average of three or five test runs, depending on
the size of the mesh.

7.1 Overlap

Overlap measures are given in table 1 for each algorithm run on three different
meshes. Figures are rounded to two decimal places. To make comparisons
meaningful, all of the parameterizations are scaled in a consistent way before
the measurement is taken (so that the sum of their edge lengths equals the sum
of the edge lengths in the original mesh).
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algorithm ‘ball’ ‘horn’ ‘octopus’
BMapS 0 0 0
BMapC 0 0 0
SSLen 0.50 9.14 10.18
MYVLen 0.48 12.58 10.30
Area 0 10.80 0.59
Area∗ 0 5.35 1.51

Table 1: overlap in the parameterizations

There aren’t enough results here to qualify any particularly bold statements,
but it’s clear that the barycentric mappings are providing the 1-1 mapping
they promise. Also, the methods involving an area preserving term to prevent
‘triangle flips’ show less overlap than the more basic optimization methods in
most cases.

The optimization methods in general fail to make guarantees with respect to
overlap. This means that even if results seem quite reasonable, there’s nothing
stopping them from one day failing horribly when a different mesh is input. In
my experience this is rare, but does occasionally happen in practice.

7.2 Length Distortion

Length distortion metrics are presented for the algorithms on the same meshes
as before, rounded to the nearest whole number. Table 2 shows the sum squared
length difference, whereas table 3 is the more refined length formula.

algorithm ‘ball’ ‘horn’ ‘octopus’
BMapS 17461 1800025 116553
BMapC 16187 1655129 121472
SSLen 404 4742 145
MYVLen 334 4592 64
Area 216 16765 217
Area∗ 216 13824 213

Table 2: sum squared length difference

algorithm ‘ball’ ‘horn’ ‘octopus’
BMapS 247107 42784165 18324455
BMapC 225346 33380381 21925513
SSLen 1604 229916 1541
MYVLen 1023 27839 335
Area 913 65745 644
Area∗ 913 48364 643

Table 3: improved length formula
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Clearly the barycentric method is very poor in this respect. The refined
length formula performs very well. The methods involving an area preserving
term also do fairly well here.

7.3 Speed

The algorithmic cost of the barycentric or convex combination method is limited
by the speed at which a system of linear equations can be generated and solved
(matrix inversion). My implementation is O(n3), where n is the number of
vertices, but it is possible to do it faster. In particular the matrix is sparse,
which basically means that most of its cells contain zeros. A sparse matrix can
be stored and worked on more efficiently by keeping just the non-zero elements
and their positions (for example, in a linked list / structure). In [9] it was shown
that a sparse matrix of this kind can be inverted in O(n1.5).

It is even more difficult to work out the algorithmic time cost of an opti-
mization algorithm. This is because there are no guarantees about how long
optimization might take to converge (such guarantees do exist for some very
simple classes of function). However, it is still worth examining the time cost
per evaluation of the objective function, which is usually called just once per
optimization step. These costs are given in table 4 (where v, e and f are the
number of vertices, edges and faces in the mesh respectively):

function time cost / evaluation time cost / eval. of derivatives
OptCC see above -
SSLen O(e) = O(v) O(e) = O(v)
MYVLen O(e) = O(v) O(e) = O(v)
Area O(e + f) = O(v) O(e + f) = O(v)
Area∗ O(e + f) = O(v) O(e + f) = O(v)
Overlap O(e + f + f2) = O(v2) -

Table 4: algorithmic time costs of evaluating the functions

Most of these take O(v) to evaluate the function and its derivative with re-
spect to every variable at a point, which isn’t unreasonable. For the two that
are slower, I haven’t defined a gradient function. As a consequence, optimiza-
tion is further slowed because the derivativeless method requires many function
evaluations per step rather than just one. This pushes these two algorithms
beyond practical use in their present forms.

Table 5 shows the number of optimization steps required by the remaining
optimization algorithms on the meshes. The number of steps for the Area∗
algorithm is the rounded average from several test runs.

As I have noted convergence is very difficult to analyse, but it appears the
sum squared length differences method is the fastest in this respect, though not
by a great margin.
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algorithm ‘ball’ ‘horn’ ‘octopus’
SSLen 124 1160 377
MYVLen 237 1305 1226
Area 208 2757 1756
Area∗ 727 3361 2191

Table 5: number of optimization steps required

Finally, table 6 gives actual running times for all of the algorithms, averaged
over three runs. These times include any time spent setting up the initial guess
for optimization methods. They are accurate to the nearest millisecond in theory
(though in practice there are fluctuations that are larger than this due to the
nature of the system I am running the tests on):

algorithm ‘ball’ ‘horn’ ‘octopus’
BMapS 1660ms 4078ms 115376ms
BMapC 1653ms 4102ms 115684ms
OptCC - - -
SSLen 2705ms 19757ms 138004ms
MYVLen 3747ms 26121ms 210513ms
Area 4500ms 67415ms 312545ms
Area∗ 9814ms 79569ms 235390ms
Overlap - - -

Table 6: running times of the parameterization algorithms
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8 Conclusion

I have implemented a number of mesh parameterization algorithms. Barycen-
tric and convex combination algorithms guarantee the 1-1 property, but have
a fixed convex boundary making it difficult to lower distortion. Optimization
algorithms on the other hand may produce parameterizations that break the 1-1
property, but improvements can be made to reduce how frequently this occurs.
I have developed two of my own variants of the optimization approach, namely
the overlap term and the optimized convex combination parameterization.

There is room for much further work here. Suggestions have been made
throughout about how some of the methods could be made to run faster and
better. The most interesting to my mind is optimized convex combinations,
which combines both of the major approaches I have examined. This could be
made to run significantly faster at a number of levels, and the boundary shape
could be made flexible to optimization as well (though it would have to remain
convex).

Another interesting possibility is that other graph drawing algorithms, be-
sides Tutte’s, could be developed into parameterization algorithms. However,
most of these algorithms are considerably less suitable.

Finally, it is worth noting that algorithms that produce mixed results can
still be practically useful. If an algorithm doesn’t work well for given prob-
lem, another algorithm can be tried until a reasonable solution is found. The
barycentric mapping (or another convex combination mapping) makes a good
‘catch all’ when other approaches have been exhausted.
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Additional Material

The following additional material is not necessary to understand the main part
of the report.

A Further Qualification of the Barycentric

Mapping Method

This appendix is dedicated to qualifying the application of Tutte’s proof [16],
to show that the barycentric mapping is 1-1 when applied to triangulated topo-
logically disc-like meshes. It is my own work, since I could not find an adequate
explanation in my research.

Tutte’s assumptions are that the graph that is to be drawn is nodally 3-
connected, contains no Kuratowski subgraphs, and that the boundary polygon
contains at least 3 vertices. The first two conditions will be explained in due
course; the last condition is clearly true because the mesh is topologically equiv-
alent to a disc, which means it must have a boundary that is a loop, and a loop
must consist of at least three vertices.

Steinit’z Theorem says that the first two conditions are equivalent to the
graph being the 1-skeleton of some polyhedron. Unfortunately this is not always
the case, so sometimes Tutte’s proof can not be applied directly. However, it’s
possible to work around the problem:

The Kuratowski graphs, namely K5 and K3,3 (illustrated below), or any
subdivision of either, are significant because a planar drawing of a graph exists
exactly when the graph does not contain a Kuratowski subgraph (this is Ku-
ratowski’s Theorem, see [5]). As noted above, the 1-skeleton of any polyhedron
contains no Kuratowski subgraph. But a mesh topologically equivalent to a disc
is a ‘submesh’ of some polyhedron (for example, one that is the same shape as
the mesh only with a very small thickness) so its 1-skeleton is a subgraph of the
1-skeleton of such a shape. Therefore, it cannot contain a Kuratowski subgraph
either.

u

u

uu

u

u u u

u u u

Figure 18: The Kuratowski graphs - K5 and K3,3
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Nodally 3-connected means that the graph is simple (has no loops or multiple
edges) and non-separable (removal of a single vertex would not separate it),
both of which are true for a topologically disc-like mesh, and also the following
condition. If the edges of the graph are partitioned into two sets in such a way
that the sets share use of exactly two vertices, u and v (illustrated in figure 19),
then one of those sets of edges is just a ‘link graph’ between u and v. A link
graph is a graph that is just a sequence of edges, one after another. This can
be thought of as ruling out graphs where a section (other than a link graph) is
connected to the main part of the graph at two or fewer vertices.

A B

v

u

v

v

Figure 19: the setup for checking nodal 3-connectivity.

Suppose that a mesh topologically equivalent to a disc has edges E. If the
nodally 3-connected condition is to be broken, there must exist two subsets
A ⊆ E and B ⊆ E with A ∪ B = E and vertices(A) ∩ vertices(B) = {u, v}, as
has been described and illustrated (where vertices(X) is the vertices that are
met by at least one edge in X). The topology requirement of the mesh means
that the faces around any internal vertex of the mesh, in particular u and v,
should form an ‘umbrella’ shape. If the vertex is a boundary vertex, they are
allowed to form a ‘half-umbrella’ instead. These arrangements are illustrated in
figure 20.
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Figure 20: the faces around any vertex u should resemble an umbrella (such as
left), or if u is a boundary vertex, a half-umbrella (right)

Examining u (back on figure 19), there are certainly edges from both
vertices(A) \ {u} and vertices(B) \ {u} to u that form ‘spokes’ of this umbrella.
The rim of the umbrella must therefore bridge the gap between vertices(A)\{u}
and vertices(B)\{u} with at least one edge. But the only way for edges of A or
B to meet the other is at the common vertices, u and v. Of those u already the
centre of the umbrella, leaving just v. With the rim meeting at just one point it
is only possible to make a half-umbrella, and so u must be a boundary vertex.
By a similar argument, so is v.

It is also worth noticing that in a triangulated mesh an edge (one of the
spokes) must exist between u and v, since v is on the rim of a half-umbrella.
This edge could be either boundary or internal. If it is on the mesh boundary
then one of the sets A or B contains only this boundary edge (u, v), which
is trivially a link graph between u and v and therefore actually satisfies the
nodally 3-connected definition. If it is internal, then nodal 3-connectivity may
be broken.

The conclusion is that a triangulated mesh topologically equivalent to a disc
is always nodally 3-connected unless there’s a ‘diagonal’ edge, an edge between
boundary vertices that is itself internal:

Figure 21: a mesh with a diagonal isn’t necessarily nodally 3-connected
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Although a mesh with a diagonal may not be nodally 3-connected, it is still
possible to apply Tutte’s proof. A mapping of the boundary vertices onto the
points of a convex polygon is given. Then, the mesh is divided into one part
either side of the diagonal, including a copy of the diagonal edge itself in both
parts:

Figure 22: the difficulty can be circumvented by treating the mesh on each side
of the diagonal as a separate problem.

The division process is applied recursively until none of the fragments have
diagonals left inside them. Each of the fragments is topologically disc-like.
Furthermore, the boundary vertices of each fragment are all from the original
boundary, and already have mapped positions in a convex arrangement. Thus,
a barycentric mapping of each fragment can be found, and is 1-1.

Finally the mappings can be combined because they don’t overlap in texture
space, except down the common diagonal(s) where they are identical.

It turns out that the barycentre equations that position the internal vertices
of a fragment aren’t affected by anything outside of that fragment. Conveniently,
this means that running the barycentric mapping on the complete mesh actually
produces exactly the same results as with this division process - so division is
not a necessary step in practice.
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B Why the Matrix is Invertible

This proof shows that the square matrix M in the barycentric method is invert-
ible, and therefore the system of equations has exactly one solution. The proof
is based on one found in [6].

That the matrix M is invertible is equivalent to that MX = 0 has only the
trivial solution X = 0 (Invertible Matrix Theorem).

Suppose MX = 0 (i.e. the system presented previously except with C = 0)
has solution X, and xmax is the (an) element of X with maximal value. xmax

corresponds to the position in the co-ordinate direction under consideration
of either a boundary or an internal vertex. If it is a boundary vertex then
xmax = Cmax = 0 by equation 2. On the other hand, if it is an internal vertex
then its equation 1 can only be satisfied if all of its neighbours have xi = xmax

as well (certainly, none are higher than xmax and so none can be lower either
to maintain the average). Since the edges in the mesh form a connected graph,
the property xi = xmax ‘spreads’ and eventually reaches some boundary vertex
xb. Thus xmax = xb = Cb = 0.

It has been shown that for any particular i, xi = 0. Thus, X = 0, as
required.
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C Derivatives for Optimization Formulae

In this appendix gradient functions are found for most of the optimization for-
mulae, allowing the conjugate gradient method to be applied without resorting
to numerical estimates. The gradient is required with respect to a change of each
optimization variable (dimension), which correspond to the u and v co-ordinates
of each vertex in texture space. The following notation will be used:

ui, vi are the u and v co-ordinates of vertex i’s mapped position

(i, j) is the edge joining vertices i and j

E is the set of all edges in the mesh

L(i,j) is the distance in the original mesh between vertices i and j

l(i,j) is the distance in texture space between vertices i and j

C.1 Sum Squared

d
dux

∑

(i,j)∈E(l(i,j) − L(i,j))
2

=
∑

(i,j)∈E
d

dux
(l(i,j) − L(i,j))

2

= {chain rule; L(i,j) constant}
∑

(i,j)∈E 2(l(i,j) − L(i,j))
d

dux
l(i,j)

= {l(i,j) =
√

(ui − uj)2 + (vi − vj)2}
∑

(i,j)∈E 2(l(i,j) − L(i,j))
d

dux

√

(ui − uj)2 + (vi − vj)2

= {chain rule on square root; vi, vj constant w.r.t. ux}
∑

(i,j)∈E 2(l(i,j) − L(i,j))
1

2
√

(ui−uj)2+(vi−vj)2
d

dux
(ui − uj)

2

= {going back to l(i,j); chain rule again}
∑

(i,j)∈E 2(l(i,j) − L(i,j))
1

2l(i,j)
2(ui − uj)

d
dux

(ui − uj)

=
∑

(i,j)∈E 2
(l(i,j)−L(i,j))

l(i,j)
(ui − uj)

d
dux

(ui − uj)

This is zero if x 6= i, j, which means that only the edges meeting x need be
considered. If x = i then (ui −uj)

d
dux

(ui −uj) = (ux −uj). On the other hand,
if x = j, then it is −(ui − ux), i.e. (ux − ui). In either case, the co-ordinate of
the far end of the edge is subtracted from that of vertex x.

The gradients d
dvx

can be similarly derived, for any vertex x. Furthermore,
the gradients for all of the points can be found together by beginning with a
vector of zeros. Then each edge in turn contributes to four gradients in the
vector, namely those of the u and v co-ordinates of each of its ends. Having
done this for every edge the vector is complete, and only O(|E|) work has been
done.
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C.2 Improved Length Formula

d
dux

∑

(i,j)∈E

(l2(i,j)−L2
(i,j))

2

L2
(i,j)

=
∑

(i,j)∈E
d

dux

(l2(i,j)−L2
(i,j))

2

L2
(i,j)

= {let C(i,j) = 1
L2

(i,j)

}
∑

(i,j)∈E C(i,j)
d

dux
(l2(i,j) − L2

(i,j))
2

= {chain rule}
∑

(i,j)∈E 2C(i,j)(l
2
(i,j) − L2

(i,j))
d

dux
(l2(i,j) − L2

(i,j))

= {L(i,j) is constant}
∑

(i,j)∈E 2C(i,j)(l
2
(i,j) − L2

(i,j))
d

dux
l2(i,j)

= {chain rule}
∑

(i,j)∈E 2C(i,j)(l
2
(i,j) − L2

(i,j))2l(i,j)
d

dux
l(i,j)

= {l(i,j) =
√

(ui − uj)2 + (vi − vj)2}
∑

(i,j)∈E 2C(i,j)(l
2
(i,j) − L2

(i,j))2l(i,j)
d

dux

√

(ui − uj)2 + (vi − vj)2

= {chain rule}
∑

(i,j)∈E 2C(i,j)(l
2
(i,j) − L2

(i,j))2l(i,j)
1

2
√

(ui−uj)2+(vi−vj)2
d

dux
((ui − uj)

2 + (vi − vj)
2)

= {vi, vj constant w.r.t ux; putting l(i,j) back.}
∑

(i,j)∈E 2C(i,j)(l
2
(i,j) − L2

(i,j))2l(i,j)
1

2l(i,j)

d
dux

(ui − uj)
2

= {chain rule another time}
∑

(i,j)∈E 2C(i,j)(l
2
(i,j) − L2

(i,j))2l(i,j)
1

2l(i,j)
2(ui − uj)

d
dux

(ui − uj)

= {tidying}
∑

(i,j)∈E 4C(i,j)(l
2
(i,j) − L2

(i,j))(ui − uj)
d

dux
(ui − uj)

Again, the last two terms here equal the co-ordinate of the vertex x, minus
the co-ordinate of the far end of the edge. The same derivation works for d

dvx
,

and the vector of gradients can be evaluated completely in O(|E|).
An interesting advantage of the improved formulation has been stumbled

into here. The gradient is perfectly well defined when l(i,j) = 0, whereas the
sum-squared formula contains division by zero in this case (which the program
deals with by defining the gradient to be zero when that happens). Note that
only division by parameterization lengths is a concern, since lengths from the
mesh (i.e. L(i,j)) should not be zero.
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C.3 Area Preserving Term

d
dux

∑

f∈faces
(S(f)−A(f))2

A(f)

= {let Cf = 1
A(f)}

∑

f∈faces Cf
d

dux
(S(f) − A(f))2

= {chain rule}
∑

f∈faces Cf2(S(f) − A(f)) d
dux

(S(f) − A(f))

= {A(f) is constant}
∑

f∈faces 2Cf (S(f) − A(f)) d
dux

S(f)

This leaves the gradient of the signed area of a triangle to be worked out.
Let the vertices of the triangle be a, b and c, and let d = b − a, e = c − a.

d
dux

S(f)

= {signed area of a triangle}
d

dux

1
2 ((d.u ∗ e.v) − (e.u ∗ d.v))

= {expanding d, e}
1
2

d
dux

(((ub − ua) ∗ (vc − va)) − ((uc − ua) ∗ (vb − va)))

= {expanding}
1
2

d
dux

(ubvc − ubva − uavc + uava − ucvb + ucva + uavb − uava)

From this the gradient depends on which (if any) of the vertices a, b or c that
x corresponds to, but is easy to calculate in each case. d

dv
’s may be calculated

just as easily. It is possible to evaluate all of the gradients together in O(|F |)
similarly to the O(|E|) method for edge length based functions.

Finally, since the length and area formulae are added, the combined gradient
can also be found by addition of the two separate gradients.
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